Sets of Numbers

Natural Numbers = $\{21, 2, 3, ...\}$ = IN Whole Numbers = $\{20, 1, 2, 3, ...\}$ = W

The phrase "natural numbers" has no letter 0, just as the set has no 0.

The phrase "whole numbers" has a letter 0, just as the set has the number 0.

Integers = $\frac{1}{2}$... $\frac{3}{2}$, $\frac{1}{2}$, $\frac{3}{2}$... $\frac{3}{3}$ = $\frac{1}{2}$ then German for counting, "Zahlen".

Rational Numbers: can be written as a fraction of decimal either terminates or repeats.

Examples: 1= 1 is rational
2=2 is rational

Note 1 is undefined 0 = 0 is rational

== .5 is rational

 $\frac{3}{4}$ = .75 is rational

 $0.12306 = \frac{12306}{100000}$ is rational

.3 = 1 is rational

 $_{0}\overline{6} = \frac{2}{3}$ is rational

.T = & is rational

. = = is rational

.4 = 4 is rational

 $.5 = \frac{5}{9}$ is rational

 $\overline{7} = \frac{7}{9}$ is rational

= Q

rational >>

root ratio >>

fraction >>

division >>

quotient =>

Q.

All of
these are
rational
because
they can
be written
as a
fraction
(Exen if
not in
lowest
terms)

=8 = 8 is rational

 $.37 = \frac{37}{99}$ is rational

. 207 = even if you don't know what the fraction is, repeating decimal means it can be written as a fraction.

Irrational Numbers: cannot be written as a fraction

or decimal neither terminates nor repeats.

examples: Tr

The opposite of rational

12

Real Numbers = IR = all rationals and all irrationals together.

Math 45 Handout for 1.3 The Number Systems and the Real Number Line

Classify numbers as natural, whole, integer, rational, irrational, real

Plot points with fractional or decimal parts on a number line.

Use inequalities to compare two numbers.

4. Evaluate expressions with absolute values.

Write the set.

2-4, -3, -2, -1, 0, 1, 23 1) C is the set of integers between -5 and 3. does not include endpoints!

List all the elements of B that belong to the given set.

2)
$$B = \{11, \sqrt{7}, -24, \frac{0}{7}, \sqrt{4}, 0.33, -7\pi, 0.444...\}$$
 $\stackrel{\circ}{=} = 0$ $\boxed{7} = 0$ $\boxed{7} = 2$ $\boxed{4} = 2$ $\boxed{4} = 4$

31,2,3...3 M Natural Numbers 11, 2

can't be I Irrational numbers 57, -777 writh raction

Answer True or False to the statement.

4) Every whole number is a real number. True

5) Some rational numbers are irrational. false

6) Some rational numbers are integers.

Plot the points in the set on a real number line. Use correct scale and label each point.

$$7\left\{-1,\frac{5}{3},\frac{17}{3},-3\right\} = \left\{-1,\frac{2}{3},-5\frac{2}{3},-3\right\} \Rightarrow -5\frac{2}{3}<-3<-1<\frac{2}{3}$$

8)
$$\{-1.75, 5.25, 1.3\} = \{-1\frac{3}{4}, 5\frac{1}{4}, 1, 3\} \Rightarrow -1\frac{3}{4} < 1 < 3 < 5\frac{1}{4}$$
 and mark evenly spaced integers covering all numbers in list.

step 1: Simplify all numbers step 2: Write numbers in order from smallest to largest

Step4: Plot dots on the line Step5: To plot numbers with fraction parts, identify the two integers on either side

Use denominator to divide the segment. step 6: Label all points:

Replace the ? with the correct symbol >, <, =.

10) -7 ? 0
$$\angle$$

$$13)\frac{8}{2} ? \frac{12}{3} + = 4$$

$$14)\frac{2}{5}?\frac{5}{9} \qquad \frac{18}{45} < \frac{25}{45}$$

$$15) - \frac{5}{7}? - \frac{3}{10} \quad \frac{-50}{70} \quad < \quad \frac{-21}{70}$$

$$\frac{3}{7}$$
? $-\frac{5}{8}$ $\frac{-24}{56}$ $> -\frac{35}{56}$

19) |-11| ?
$$\frac{33}{-3}$$
 | | > -||

Math 45: Useful Math Terminology

Operation: add, subtract, multiply, divide, exponent, radical, absolute value, etc.

Order of Operations: Rules for which part of a calculation to do first, and then what order to proceed

Variable: A letter used to represent any or a specific number, often unknown

Expression: A combination of variables and numbers with no equal sign, though operations are permitted

Substitute: Replace a variable or an expression by a variable or expression which is known to be equal

Evaluate: Give a number answer as a result, often by substituting given values for a variable then performing any operations

Terms: Parts of an expression that are separated by addition (rewrite subtraction as addition)

Distribute: Multiply a single term by all terms within parentheses that follow or precede it

Factors: Parts of a term that are separated by multiplication (rewrite division as multiplication)

Factor: Find the prime factors (numbers or polynomials) which multiply to give the original expression

Reduce: Put a fraction in lowest terms. A reduced fraction has no common factors, decimals or fractions within fractions

Constant: An expression which is a number without variables

Coefficient: A number, especially if multiplied times a variable or product of variables

Equation: Two expressions separated by an equal sign

Inequality: (a) One of the four symbols <, >, \le , \ge

(b) Two expressions separated by an inequality symbol

Solve: Find all solutions, meaning the values for a variable which make an equation or inequality true. Solution may be a list, set, interval, or a graph.

Isolate: Perform operations to both sides of an equation or inequality so the isolated item is alone on one side

Set equal to zero: Write an equation by writing a given expression, an equal sign, and a zero

Rational: A number or expression which is or can be written as a fraction

Simplify: Final form for an answer. Reduce fractions, distribute, combine like terms, evaluate operations. If simplifying a rational expression, factor and divide out common factors, then leave final answer factored.

Interval: A set of all values between two given endpoints. Notation will specify if endpoints are included.

Ordered Pair or Point: A pair of numbers in parentheses, separated by a comma, denoting the x- and y-coordinates on a rectangular coordinate graph